Minggu, 11 Juli 2021

All Sweet Fruit is Acidic and Compromising to Good Health!


When you eat an acidic sweet fruit like Mango the salivary glands in the mouth will immediately secret sodium bicarbonate to buffer the acidic fruit sugars which causes the pH of the saliva to increase. This gives the illusion that eating sweet sugary fruit is alkalizing. But it is not!

As soon as you bite into a sweet fruit the stomach goes into sodium bicarbonate production to fill up the salivary glands with alkaline buffers to buffer the fruit sugars. To continue this practice will cause depletion of alkaline buffers, over-stress the stomach with hydrochloric acid and compromise the alkaline pH of the small intestines leading to serious illness.

A raw foodist or fruitarian can get away with this practice for awhile but sooner or later will pay a high price in their health for their over-indulgence of acidic sweet fruit.

I have found that anyone who is eating sweet fruit daily will have anemic-yeasty blood as seen in the phase contrast micrograph above.

My recommendation: eat sweet fruit sparingly and only in the season thereof. The best scenario is to eliminated all sweet fruit, especially if you are dealing with a serious illness.

Here are the fruit which should only be eaten in the season thereof and in moderation. If one is dealing with a serious symptomology these high sugar fruit should be completely avoided. Here is the list of acidic fruit to avoid: apples, oranges, bananas, berries, pineapple, mango, Thai coconut, honey dew, watermelon, cherries, grapes, kiwi, dates, and dried fruit. The fruit which can be eaten freely are cucumbers, lemon, lime, avocado, peppers, cantaloupe and grapefruit.


Minggu, 10 Juli 2011

Another Type I Diabetic OFF INSULIN!


The following email letter epresses what can happen for ANY Type I diabetic when they follow The pH Miracle Lifestyle. They get off their insulin injections.

To learn more about preventing and reversing Type I and Type II diabetes read our book, The pH Miracle for Diabetes.

http://ancizesecoles.org/

Hi Dr. Young,

I'm one of your microscopists, I came to the advanced class a couple of years ago.. I live on the Big Island of Hawaii.

I had a client come to me about 9 months or so ago, she brought her 9 year old daughter who had just been diagnosed with Type 1 diabetes. I felt in over my head, but I worked with her as best I could, giving her free blood sessions and instructions and supporting her as she got her daughter on the pH MIRACLE diet. She also spoke with the mother of the 2 boys you helped become Type I diabetes free who also gave her some good support and instruction.

Within a week of being on a strict pH Miracle alkaline diet she had already cut her insulin in half and then some, so she was very encouraged and very determined. And fortunately her daughter was also very compliant. And to compound things, mom was in very poor financial straights but somehow managed to make it work.

Anyway, she moved to Texas about 5 months ago and she just contacted me this week to tell me her daughter has been off insulin for 4 months now!!! Another pH miracle for Diabetes.

Loving your Magnesium articles.

Aloha
Angela Lesle

Rabu, 06 Juli 2011

Magnesium the Light of Life

Magnesium the Light of Life

image

Inside chlorophyll is the light of
life and that light is magnesium

The capture of light energy from the sun is magnesium dependent. Magnesium is bound as the central atom of the porphyrin ring of the green plant pigment chlorophyll. Magnesium is the element that causes plants to be able to convert light into energy and chlorophyll is identical to hemoglobin except the magnesium atom at the center has been taken out and iron put in. The whole basis of life and the food chain is seen in the sunlight-chlorophyll-magnesium chain. Since animals and humans obtain their food supply by eating plants magnesium can be said to be the source of life for it is at the heart of chlorophyll and the process of photosynthesis.

A huge step forward for early life was the development of chlorophyll, a molecule that captures light energy from the sun in a process called photosynthesis. Chlorophyll systems convert energy from visible light into small energy-rich molecules easy for cells to use. The harnessing of the energy of visible light led to a vast expansion of early life-forms. Fossilized layers, three and half billion years old, have been found with evidence of blue-green algae that lived on top of tidal rocks.

image
Chlorophyll a (minus the alkyl side chain for clarity) with its
magnesium core. Chlorophyll is recognized as one of nature’s riches
sources of important nutrients where its rich green pigment is vital for the
body’s rapid assimilation of amino acids and for the synthesis of enzymes.

Magnesium is needed by plants to form chlorophyll which is the substance that makes plants green. Without magnesium sitting inside the heart of chlorophyll, plants would not be able to take nutrition from the sun because the process of photosynthesis would not go on. When magnesium is deficient things begin to die. In reality one cannot take a breath, move a muscle, or think a thought without enough magnesium in our cells. Because magnesium is contained in chlorophyll it is considered an essential plant mineral salt.

Without chlorophyll, plants are unable
to convert sunlight and carbon dioxide.
There is no life without magnesium.

image

image

image

Magnesium is a necessary element for all living organisms both animal and plant. Chlorophyll is structured around a magnesium atom, while in animals, magnesium is a key component of cells, bones, tissues and just about every physiological process you can think of. Magnesium is primarily an intracellular cation; roughly 1% of whole-body magnesium is found extracellularly, and the free intracellular fraction is the portion regulating enzyme pathways inside the cells. Life packs the magnesium jealously into the cells, every drop of it is precious.

Insulin and Magnesium

Magnesium is necessary for both the action
of insulin and the manufacture of insulin.

Magnesium is a basic building block to life and is present in ionic form throughout the full landscape of human physiology. Without insulin though, magnesium doesn’t get transported from our blood into our cells where it is most needed. When Dr. Jerry Nadler of the Gonda Diabetes Center at the City of Hope Medical Center in Duarte, California, and his colleagues placed 16 healthy people on magnesium-deficient diets, their insulin became less effective at getting sugar from their blood into their cells, where it’s burned or stored as fuel. In other words, they became less insulin sensitive or what is called insulin resistant. And that’s the first step on the road to both diabetes and heart disease.

Insulin is a common denominator, a central figure in life as is magnesium. The task of insulin is to store excess nutritional resources.This system is an evolutionary development used to save energy and other nutritional necessities in times (or hours) of abundance in order to survive in times of hunger. Little do we appreciate that insulin is not just responsible for regulating sugar entry into the cells but also magnesium, one of the most important substances for life. It is interesting to note here that the kidneys are working at the opposite end physiologically dumping from the blood excess nutrients that the body does not need or cannot process in the moment.

Controlling the level of blood sugars is only one of the many functions of insulin. Insulin plays a central role in storing magnesium but if our cells become resistant to insulin, or if we do not produce enough insulin, then we have a difficult time storing magnesium in the cells where it belongs. When insulin processing becomes problematic magnesium gets excreted through our urine instead and this is the basis of what is called magnesium wasting disease.

There is a strong relationship between magnesium and insulin action.
Magnesium is important for the effectiveness of insulin. A reduction
of magnesium in the cells strengthens insulin resistance.
[1],[2]

Low serum and intracellular magnesium concentrations are associated with insulin resistance, impaired glucose tolerance, and decreased insulin secretion. [3],[4],[5]Magnesium improves insulin sensitivity thus lowering insulin resistance. Magnesium and insulin need each other. Without magnesium, our pancreas won’t secrete enough insulin–or the insulin it secretes won’t be efficient enough–to control our blood sugar.

Magnesium in our cells helps the muscles to relax but if we can’t store magnesium because the cells are resistant then we lose magnesium which makes the blood vessels constrict, affects our energy levels, and causes an increase in blood pressure. We begin to understand the intimate connection between diabetes and heart disease when we look at the closed loop between declining magnesium levels and declining insulin efficiency.

Though it would be a long stretch of the longest giraffe’s neck to compare insulin with chlorophyll we are walking a trail at the very nuclear core of life. It’s the magnesium trail and we find to our surprise that it takes us into intimate contact with the very structure and foundation of life. The dedication of this chapter is to the beauty of magnesium, to its meaning in life, in health and in medicine.

We were talking about chlorophyll and now insulin and putting magnesium in-between. Walking further along is the DHEA magnesium story and the DNA magnesium story. And then there is the cholesterol magnesium story. Every part of life is in love with magnesium except allopathic medicine which just cannot accept it in all its light, flame and beauty. Thousands of years ago the Chinese named it the beautiful metal and they were seeing something pharmaceutical medicine does not want to see for there is little money to be made from something so common.

Magnesium and DNA

image
Mechanism of electric conductivity in DNA. Magnesium (silver circles)
with no surrounding water supplies holes (light-blue circles) to the DNA, which
is an insulator. The supplied holes move along the DNA (light-blue line).

Magnesium ions play critical roles in many aspects of cellular metabolism. Magnesium stabilizes structures of proteins, nucleic acids, and cell membranes by binding to the macromolecule’s surface and promote specific structural or catalytic activities of proteins, enzymes, or ribozymes. Magnesium has a critical role in cell division. It has been suggested that magnesium is necessary for the maintenance of an adequate supply of nucleotides for the synthesis of RNA and DNA.

Magnesium plays a critical role in vital DNA repair proteins.
Magnesium ions synergetic effects on the active site
geometry may affect the polymerase closing/opening trends.
Single-stranded RNA are stabilized by magnesium ions.

Distinct structural features of DNA, such as the curvature of dA tracts, are important in the recognition, packaging, and regulation of DNA are magnesium dependent. Physiologically relevant concentrations of magnesium have been found to enhance the curvature of dA tract DNAs. The chemistry of water activated by a magnesium ion is central to the function of the DNA repair proteins, apurinic/apyrimidic endonuclease 1 (Ape1) and polymerase A (Pol A). These proteins are key constituents of the base excision repair (BER) pathway, a process that plays a critical role in preventing the cytotoxic and mutagenic effects of most spontaneous, alkylation, and oxidative DNA damage.[6]

Magnesium ions help guide polymerase selection for the
correct nucleotide extends descriptions of polymerase pathways.
[7]

Dr. Paul Ellis informs us that, “Magnesium ions are central to the function of the DNA repair proteins, apurinic/apyrimidic endonuclease 1 (Ape1) and polymerase A (Pol A). These proteins are key constituents of the base excision repair (BER) pathway, a process that plays a critical role in preventing the cytotoxic and mutagenic effects of most spontaneous, alkylation, and oxidative DNA damage.”[8] DNA polymerase is considered to be a holoenzyme since it requires a magnesium ion as a co-factor to function properly. DNA-Polymerase initiates DNA replication by binding to a piece of single-stranded DNA. This process corrects mistakes in newly-synthesized DNA.

DHEA – Magnesium – Cholesterol

image

Low levels of DHEA are associated with loss of “pathology
preventing” signaling between immune system cells.
[9]

Dr. James Michael Howard says, “Cancer and infections are both increasing and one of the basic reasons is reduced availability of DHEA, which stems from magnesium deficiency.” Also known as "mother of all steroid hormones" DHEA is converted in the body into several different hormones, including estrogen and testosterone. DHEA appears to restore immune balance and stimulate monocyte production (the cells that attack tumors), B-cell activity (the cells that fight disease-causing organisms), T-cell mobilization (infection fighting T-cells have DHEA binding sites), and protection of the thymus gland (which produces T-cells).[10] The data suggest that DHEA has a role in the neuro-endocrine regulation of the antibacterial immune resistance.[11]

All steroid hormones are created from cholesterol in a hormonal cascade. Cholesterol, that most maligned compound, is actually crucial for health and is the mother of hormones from the adrenal cortex, including cortisone, hydrocortisone, aldosterone, and DHEA. Cholesterol cannot be synthesized without magnesium and cholesterol is a vital component of many hormones. These hormones are interrelated, each performing a unique biological function with them all depending on magnesium for their function. Aldosterone interestingly needs magnesium to be produced and it also regulates magnesium’s balance.[12]

Dr. Mildred S. Seelig wrote, “Mg2+-ATP is the controlling factor for the rate-limiting enzyme in the cholesterol biosynthesis sequence that is targeted by the statin pharmaceutical drugs, comparison of the effects of Mg2+ on lipoproteins with those of the statin drugs is warranted. Formation of cholesterol in blood, as well as of cholesterol required in hormone synthesis, and membrane maintenance, is achieved in a series of enzymatic reactions that convert HMG-CoA to cholesterol. The rate-limiting reaction of this pathway is the enzymatic conversion of HMG CoA to mevalonate via HMG CoA. The statins and Mg inhibit that enzyme. Mg has effects that parallel those of statins. For example, the enzyme that deactivates HMG-CoA Reductase requires Mg, making Mg a Reductase controller rather than inhibitor. Mg is also necessary for the activity of lecithin cholesterol acyl transferase (LCAT), which lowers LDL-C and triglyceride levels and raises HDL-C levels.”[13]

Desaturase is another Mg-dependent enzyme involved in
lipid metabolism which statins do not directly affect.

DHEA is a steroid hormone produced by the adrenal gland and ovaries and converted to testosterone and estrogen. After being secreted by the adrenal glands, it circulates in the bloodstream as DHEA-sulfate (DHEAS) and is converted as needed into other hormones.Magnesium chloride, when applied transdermally, is reported by Dr. Norman Shealy to increase DHEA.[14] Dr. Shealy has determined that when the body is presented with adequate levels of magnesium at the cellular level, the body will begin to naturally produce DHEA and also DHEA-S.

Transdermal is the ultimate way to replenish cellular magnesium
levels. Every cell in the body bathes and feeds in it and even DHEA
levels are increased naturally, according to Dr. Norman Shealy

This effect is not seen in oral or intravenous magnesium administration and Dr. Shealy has a patent pending in this area. It is thought that transdermal application interacts in some way with the fatty tissues of the skin to create the affect. Studies link low levels of DHEA to chronic inflammation, immune dysfunction, depression, rheumatoid arthritis, Type-II diabetic complications, greater risk for certain cancers, heart disease and osteoporosis.

To increase your bio-available magnesium I offer in several forms:



1) Concentrated Liquid chlorophyll for magnesium ions to help build blood -

http://phmiracleliving.com/p-306-liquid-chloropheal.aspx

2) Magnesium chloride in our pHlavor salts and OsteoPlex I and II for improving bone health:

http://phmiracleliving.com/p-211-phlavor.aspx

http://phmiracleliving.com/p-554-osteoplex-i.aspx

http://phmiracleliving.com/p-555-osteoplex-ii.aspx

3) Magnesium oxide for cleansing the bowels:

http://phmiracleliving.com/p-356-phlush.aspx

4) Magnesium hydroxide and magnesium bicarbonate for buffering and eliminating environmental, dietary and/or metabolic acids:

http://phmiracleliving.com/p-560-activator.aspx

http://phmiracleliving.com/p-221-phour-salts.aspx


[1] Paolisso G, Scheen A, D’Onofrio F, Lefebvre P: Magnesium and glucose homeostasis. Diabetologia 33:511–514, 1990[Medline]

[2] Nadler JL, Buchanan T, Natarajan R, Antonipillai I, Bergman R, Rude R: Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 21:1024–1029, 1993

[3]Ma J, Folsom AR, Melnick SL, Eckfeldt JH, Sharrett AR, Nabulsi AA, Hutchinson RG, Metcalf PA: Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid wall thickness: the ARIC study. J Clin Epidemiol 48:927–940, 1985

[4] Rosolova H, Mayer O Jr, Reaven GM: Insulin-mediated glucose disposal is decreased in normal subjects with relatively low plasma magnesium concentrations. Metabolism 49:418–420, 2000[Medline]

[5] Resnick LM, Gupta RK, Gruenspan H, Alderman MH, Laragh JH: Hypertension and peripheral insulin resistance: possible mediating role of intracellular free magnesium. Am J Hypertens 3:373–379, 1990[Medline]

[6] Magnesium Increases the Curvature of Duplex DNA That Contains dA Tracts. Bozidar Jerkovic and Philip H. Bolton. Chemistry Department, Wesleyan University. Biochemistry, 40 (31), 9406 -9411, 2001. 10.1021/bi010853j S0006-2960(01)00853-4

[7] Critical Role of Magnesium Ions in DNA Polymerase ?’s Closing and Active Site Assembly. Linjing Yang, Karunesh Arora, William A. Beard, Samuel H. Wilson, Tamar Schlick. Department of Chemistry and Courant Institute of Mathematical Sciences,
New York University

[8] http://www.sysbio.org/capabilities/nmr/nih/magnesium.stm

[9] Verthelyi D, Petri M, Ylamus M, Klinman DM. Retroviral Immunology Section, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA. Lupus. 2001;10(5):352-8.

[10] Le Vert, Suzanne, HGH: The Promise of Eternal Youth (New York: 1997, Avon Books), pages 25, 26, 93, 106, 153, 172. ISBN: 0-380-78885-3

[11] J. Med. Microbiol. 1999; 48: 425)

[12] A deficiency in magnesium causes hyperplasia of the adrenal cortex, elevated aldosterone levels, and increased extracellular fluid volume. Aldosterone increases the urinary excretion of magnesium; hence, a positive feedback mechanism results, which is aggravated since there is no renal mechanism for conserving magnesium.

[13] Journal of the American College of Nutrition, Vol. 23, No. 5, 501S-505S (2004) Comparison of Mechanism and Functional Effects of Magnesium and Statin Pharmaceuticals Andrea Rosanoff, PhD and Mildred S. Seelig, MD Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn (M.S.)

Selasa, 05 Juli 2011

Support Complementary and Alternative Medicine as Covered Medical Expenses

Washington, D.C. - A bill was introduced at the end of May that would expand the IRS code to include herbs, vitamins, minerals, homeopathic remedies, meal replacement products, and other dietary and nutritional supplements as “eligible medical expenses” - a move that is long overdue.


On May 26th Sen. Orrin Hatch (R-UT) and Rep. Erik Paulsen (R-MN) introduced the Retirement Health Investment Act of 2011, (S.1098/H.R. 2010). The House version has already garnered 32 cosponsors and both bills are being reviewed in committee.

If you follow health care policy in the news then you already know that there are two health savings programs that help pay for complementary and alternative medical (CAM) treatments normally not covered by regular insurance. These are Flexible Spending Arrangements (FSAs) and Health Savings Accounts (HSAs). Currently CAM treatments are not considered eligible to be covered by HSAs.

The pH Miracle Group of Companies supports the bill as a critical step in the direction of parity for CAM treatments. However, we agree with the Alliance for Natural Health in its call for the bill's language to be amended. It must address that part of the healthcare reform act that threatens the very existence of HSAs.

HSAs are savings accounts exempt from federal income tax at the time of deposit. Each year any unspent funds accumulate and "roll over" to the following year. To make use of HSAs one must be covered under a high-deductible insurance plan - but starting in 2014 the healthcare reform act will allow high-deductible or catastrophic healthcare insurance plans for people only under the age of 30.

This means that beginning in 2014, people over the age of 30 will not be able to purchase an HSA because they will not be eligible for catastrophic plans—making any changes to HSAs irrelevant to them.

CAM patients have traditionally used such high-deductible plans to cover emergency services, and use HSAs for purchasing treatments not covered by traditional healthcare insurance. Without the preservation of both high-deductible healthcare plans and HSAs, CAM users may have to purchase additional - and expensive - health insurance with coverage they don’t need, while still having to spend money on alternative treatments not covered by insurance.

To be clear, the pH Miracle Group of Companies wholeheartedly supports S. 1098/H.R. 2010 and its fundamental goal of adding CAM treatments to the list of medical expenses eligible for coverage under HSAs. However, the healthcare reform act needs to be amended to allow for catastrophic plans for people over 30 years of age.

Please contact your Congress person in response to this bill sponsored by Senator Hatch.